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Models undergoing a phase transition to an absorbing state weakly broken by the addition of a very low
spontaneous nucleation rate are shown to exhibit hysteresis loops whose width �� depends algebraically on the
ramp rate r. Analytical arguments and numerical simulations show that ���r� with �=1 / ���+1�, where ��
is the critical exponent governing the survival probability of a seed near threshold. These results explain similar
hysteresis scaling observed before in liquid crystal convection experiments. This phenomenon is conjectured to
occur in a variety of other experimental systems.
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Directed percolation �DP� is an archetypical model of
phase transitions into an absorbing state, i.e., a state from
which a system can never escape. A vast literature of theo-
retical and numerical studies has enlarged the range of phe-
nomena in the DP universality class �1�, refining conditions
for this prominent critical behavior, known as DP conjecture
�1–3�. Experimentally, the author and co-workers recently
found that electrohydrodynamic convection of nematic liquid
crystal shows the scaling behavior of DP at the transition
between two turbulent states �DSM1-DSM2� �4�. Applying
voltages V closely above the threshold, spatiotemporal inter-
mittency �STI� occurs, in which DSM2 patches move around
in a DSM1 background. As conjectured early by Pomeau �5�,
this STI was unambiguously mapped onto DP with DSM1
playing the role of the absorbing state. This constituted a
clear experimental realization of a DP-class absorbing phase
transition.

On the other hand, Kai et al. reported in 1989 hysteresis
phenomena around this DSM1-DSM2 transition �6�. Measur-
ing the global light transmittance through the sample, in-
creasing or decreasing the applied voltage V at a rate r, they
found hysteresis loops of width �V scaling roughly like
�V�r� with ��0.5–0.6 �6,7�. In particular, these loops dis-
appear in the small-r limit, and it has been discussed whether
the transition corresponds to a supercritical bifurcation or a
subcritical one. This is in apparent contradiction with DSM1
being an absorbing state, since then one expects infinitely
wide hysteresis loops. It is shown here that the scaling of
hysteresis loops is, in fact, in full agreement with the DP
framework in which the DSM1 state is only quasiabsorbing,
i.e., with the existence of a small residual probability for
spontaneous nucleation of DSM2 patches either in the bulk
or at the boundaries.

As a first illustration, a probabilistic cellular automaton
�PCA� version of the contact process �CP� �1,8� is intro-
duced, in which an extra, small probability h to create an
active site spontaneously anywhere is added. Consider a two-
dimensional �2D� square lattice of size L�L and assign a
variable si,j to each lattice point, encoding its local state,
either inactive �absorbing, si,j =0� or active �si,j =1�. Indices i

and j denote Cartesian coordinates. The time evolution is as
follows: randomly choose one site and stochastically flip it
with probabilities

pi,j�0 → 1� =
p1

4
�si−1,j + si+1,j + si,j−1 + si,j+1� + h ,

pi,j�1 → 0� = p2, �1�

where p1=� / ��+1� and p2=1 / ��+1�. The two terms in the
first equation account for contamination by neighbors and
spontaneous nucleation of active sites, respectively. Periodic
boundary conditions si,j =si+L,j =si,j+L are used throughout,
and a time step �or Monte Carlo step �MCS�� consists of L2

flipping attempts. The h=0 case is known as the PCA version
of the original �2+1�D CP, which shows a DP-class transi-
tion at �c=1.648 77�3� �9� �the number in parentheses de-
notes the uncertainty in the last figure�. In the present study,
L=256 and h��hL2=10−2. Although, strictly speaking, even
rare nucleation events wipe out the absorbing phase transi-
tion, in practice a significantly low nucleation rate allows us
to observe the underlying critical behavior as we shall see in
this study. The nucleation rate h theoretically corresponds to
an external field �10�, so a weak-field case is dealt with here.

The model behaves similarly to the turbulence of liquid
crystals in many aspects. For instance, ���c and initial con-
ditions of si,j =0 everywhere lead to a nucleus growth after
sufficient time has passed, which faithfully reproduces ex-
periments. In particular, the model exhibits hysteresis as
shown in Fig. 1�a� and movie S1 �11� when � is increased
from ���c to �	�c at a constant ramp rate r and then
decreased at the same speed. The hysteretic process can be
decomposed into three stages as indicated in the bottom of
Fig. 2. Let us start from the uniformly inactive state and
increase �. First, active clusters do not emerge even for �
	�c due to the very low nucleation rate �first stage�. How-
ever, once a spontaneous nucleation occurs, the active
nucleus grows and finally covers the whole system because
of �	�c �second stage�. The density of active sites, 
, satu-
rates at the steady state value 
steady���. On the other hand,
when � is decreased, the number of active sites decreases
gradually and homogeneously contrary to the growing pro-
cess, approximately following 
steady��� �third stage�. This*kazumasa@daisy.phys.s.u-tokyo.ac.jp
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strikingly resembles what is observed in the liquid crystal
experiments �Fig. 1�b�, movie S2 �11�, Refs. �6,12��. Note
that the observed hysteresis both in the experiments and in
the simulations is not a stationary property of the system, as
would imply a first order transition, but rather a dynamical
effect owing to the sweep of the parameter.

The dependence on the ramp rate r is shown in Fig. 2,
which is again very similar to the corresponding experiments
�6,12�. The widths of the hysteresis loops �� and ��*, de-

fined as in Fig. 2, clearly exhibit the power law dependence
�� ,��*�r� �Fig. 3 �disks and triangles��, with �=0.61�1�
for �� and �=0.56�3� for ��*. Here the ranges of error
correspond to 95% confidence intervals in the sense of Stu-
dent’s t. They are in good agreement with the experimental
value �=0.5–0.6 �6,7�.

Besides the agreement between the simulations and the
experiments, the exponent � can also be derived only by
assuming DP criticality with a very low probability for spon-
taneous nucleation. For absorbing phase transitions, the
probability P� with which an active site survives forever
grows algebraically as P����� for ���−�c	0, where ��
constitutes one of the critical exponents characterizing these
transitions. �Note that for the DP class the so-called “rapid-
ity” symmetry implies ��=� �1,13�, where � is the critical
exponent corresponding to the stationary active site density

FIG. 1. Hysteresis observed in simulations and experiments. �a� Hysteresis of �2+1�D CP with h�=10−2. Black regions denote active
sites. The control parameter � is increased and then decreased in the range of 1�3.4 at the ramp rate of r=0.001 MCS−1. The critical
point for the model without nucleation is �c=1.648 77�3� �9�. The arrows after the values of � denote whether they are increasing or
decreasing. �b� Hysteresis in the electrohydrodynamic convection, where the same cell as in Ref. �4� is used. The control parameter, applied
voltage V, is ramped in the range of 22 VV75 V at the rate of r=1.71 V /s with fixed frequency of 250 Hz. The critical voltage is
Vc�35 V �4�. Darker regions correspond to DSM2, the active state. Note that the global intensity and contrast are adjusted for the sake of
clarity, and that DSM1 and DSM2 coexist in the two images at the lower left.
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FIG. 2. �Color online� Typical hysteresis loops for four different
ramp rates r in �2+1�D CP with h�=10−2. Note that the ratios of the
four values of r are chosen to be approximately the same as in Fig.
1 of Ref. �6� to allow the comparison �see also Ref. �12��. The
hysteretic process can be decomposed into three stages as indicated
in the bottom figure.
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FIG. 3. �Color online� Widths of the loops �� �disk�, ��* �tri-
angle�, and ��

t
* �square� with respect to the ramp rate r, in the case

of �2+1�D CP with h�=10−2. The symbols and error bars indicate
means and standard deviations, respectively, of 50 independent
runs. Dashed curves denote the results of the fitting to the power
law ��, ��*, ��

t
*�r�. The inset shows the same data in logarith-

mic scales.
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steady.� Suppose � is increased linearly as ��t�=rt and a
nucleus appears and grows at time t=T, and assume that the
ramp rate r is so slow that the finite-time survival probability
converges to P� before the control parameter significantly
changes, the following relation then approximately holds:

1 � �
0

T

h�P�„��t�…dt � h�r��T��+1, �2�

and thus the width of the hysteresis is

��
t
* � rT � r1/���+1�. �3�

It gives the exponent for the hysteresis as �=1 / ���+1�
=0.632�2� for the �2+1�D DP �14�. Of course the assumed
nucleation process is stochastic, so that, strictly, one should
deal with the average width 	��

t
*
 based on the probabilistic

distribution. This more rigorous approach is also straightfor-
ward. With P0�t� being the probability that a nucleus does
not appear and grow until time t, the probability that such a
nucleation first occurs between time t and t+dt is written as

− dP0�t� = P0�t�h�P�„��t�…dt

= Ch�r��t�� exp�−
Ch�r��

�� + 1
t��+1�dt , �4�

where C is defined by P�=C���. This gives the average of
the hysteresis width as

	��
t
*
 = r�

0

�

t�−
dP0�t�

dt
�dt = ���� + 2

�� + 1
� ��� + 1�r

Ch�
�1/���+1�

,

�5�

which confirms Eq. �3�. Note that the standard deviation also
obeys the same power law �with a different coefficient�,
since the stochastic process at play is essentially Poissonian.

The derived value of �=0.632�2� is slightly larger than
the numerical and experimental values. This stems from the
use of different definitions for the lower bound of the loop:
the merging point of the two curves defining the loop is used
for the experiments and simulations ��� and ��*�, whereas,
theoretically, the exact critical point �c is used to define the
lower bound. Adopting the latter definition for the simula-
tions ���

t
* in Fig. 2�, �=0.64�5� is obtained �Fig. 3�, which

is now in close agreement with the theoretical value. Thus
the picture based on DP with a weakly broken absorbing
state quantitatively explains the observed hysteresis. The
above derivation also indicates that the scaling of hysteresis
loops is seen for such values of h� and r that nucleations,
including those with a short lifetime, occur several times
within the range where the scaling P����� holds.

Given that the only assumption was criticality of an ab-
sorbing transition together with very rare spontaneous nucle-
ations, the observed scaling of hysteresis with the exponent
�=1 / ���+1� is expected to be found universally in systems
that exhibit quasiabsorbing transitions. This is confirmed by
performing simulations in different dimensions and for dif-
ferent models and universality classes �Table I and Figs. 4�a�
and 4�b��. In all cases, the measured � values for ��

t
* are in

good agreement with those derived by Eq. �3�. The loop
scaling is also robust to situations when the ramp rate r
and/or the nucleation probability h� vary with time or the
control parameter. As long as they are nonzero and analytic
at criticality, this gives only higher order corrections to Eq.
�2� and does not affect the final result when r→0. Even if
this condition is not satisfied, the corrected form of Eq. �3�
can be calculated, for example, in the case of nonlinear

TABLE I. Hysteresis exponent � for several models.

Exponent � for

Modela �� ��* ��
t
* 1 / ���+1�

�2+1�D CP �PCA� 0.61�1� 0.56�3� 0.64�5� 0.632�2�b

�2+1�D CP 0.61�2� 0.61�4� 0.65�7� 0.632�2�b

�1+1�D CP �PCA� 0.69�1� 0.73�3� 0.81�4� 0.783b

�1+1�D site DPc 0.68�2� 0.71�5� 0.82�7� 0.783b

�2+1�D voterliked,e 0.465�14� 0.460�17� 0.47�4� 0.5

aSystem sizes and nucleation rates are set to L=4096 and h�
=10−4 for �1+1�D, and to L=256 and h�=10−2 for �2+1�D.
bValues of the DP exponent �� are from Ref. �15� for �1+1�D and
from Refs. �14� for �2+1�D.
cSimulations are performed in the Domany-Kinzel lattice.
dKinetic Ising model with spin-flip probability psH is considered,
where s= �1 and H� �−4,−2,0 ,2 ,4� denote a spin and its local
field, respectively. p−2 is swept here with the other parameters fixed
at p4=h=10−2 /L2, p2=0.17, p0=0.5, and p−4=0.68. This model
shows a transition in the voter universality class �16�.
eHysteresis is measured in terms of the density of interfaces �i.e.,
the fraction of +− pairs� instead of the active site density �i.e.,
magnetization�, since the former characterizes the voter class better
�16� and shows faster relaxation.
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FIG. 4. �Color online� Hysteresis scaling for �1+1�D CP �a�,
�2+1�D voterlike �b�, �2+1�D CP with quadratic ramping ��t�
=r�t2 �c�, and �2+1�D CP with square root ramping ��t�=r�t1/2 �d�.
The estimates of the exponent � for ��

t
* agree with the theoretical

values, namely, 0.783 �a�, 0.5 �b�, 0.462�2� �c�, and 0.774�2� �d�.
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ramping ��t�=r�ta; the hysteresis exponent becomes then �
=1 / �a��+1�, which is numerically confirmed �Figs. 4�c� and
4�d��.

Some experimental systems expected to belong to the DP
class seem to lack strictly absorbing states due to residual
nucleations �1,17�. This suggests that the same hysteresis
may be observed in such systems, for example, with different
alignments or at other transitions in the electrohydrodynamic
convection �18,19�. A much more intriguing candidate can be
found in the field of quantum turbulence �20�. Recently, a
number of experimental studies on transitions to turbulence
in superfluid 4He have reported hysteresis �21–24� and tem-
poral intermittency in local state of turbulence �22–25�. The
existence of a �quasi�absorbing state is also expected due to
the quantum topological constraint. All of these facts suggest
that an absorbing transition to STI may take place in this
superfluid system. Although it seems technically difficult to
examine conventional critical phenomena of absorbing tran-
sitions directly there, scaling of hysteresis loops may be

more easily accessible and would allow one to decide about
the corresponding universality class.

In conclusion, the hysteresis loop scaling experimentally
observed before at the DSM1-DSM2 transition of liquid
crystal convection was explained by assuming DP dynamics
with very rare spontaneous nucleations. This implies that
DSM1 is probably only quasiabsorbing in the liquid crystal
system. Moreover, scaling of hysteresis loops ���r� with
�=1 / ���+1� was demonstrated to be able to decide the uni-
versality class of transitions into a quasiabsorbing state.
These results may also be used to analyze critical phenomena
in systems where measurable quantities are so limited that
usual approaches to absorbing phase transitions cannot be
adopted, such as in superfluid turbulence.
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